Advancing Acoustic-to-Word CTC Model

نویسندگان

  • Jinyu Li
  • Guoli Ye
  • Amit Das
  • Rui Zhao
  • Yifan Gong
چکیده

The acoustic-to-word model based on the connectionist temporal classification (CTC) criterion was shown as a natural end-to-end (E2E) model directly targeting words as output units. However, the word-based CTC model suffers from the out-of-vocabulary (OOV) issue as it can only model limited number of words in the output layer and maps all the remaining words into an OOV output node. Hence, such a word-based CTC model can only recognize the frequent words modeled by the network output nodes. Our first attempt to improve the acoustic-to-word model is a hybrid CTCmodel which consults a letter-based CTC when the word-based CTC model emits OOV tokens during testing time. Then, we propose a much better solution by training a mixed-unit CTC model which decomposes all the OOV words into sequences of frequent words and multi-letter units. Evaluated on a 3400 hours Microsoft Cortana voice assistant task, the final acoustic-to-word solution improves the baseline word-based CTC by relative 12.09% word error rate (WER) reduction when combined with our proposed attention CTC. Such an E2E model without using any language model (LM) or complex decoder outperforms the traditional context-dependent phoneme CTC which has strong LM and decoder by relative 6.79%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spoken Term Detection for Persian News of Islamic Republic of Iran Broadcasting

Islamic Republic of Iran Broadcasting (IRIB) as one of the biggest broadcasting organizations, produces thousands of hours of media content daily. Accordingly, the IRIBchr('39')s archive is one of the richest archives in Iran containing a huge amount of multimedia data. Monitoring this massive volume of data, and brows and retrieval of this archive is one of the key issues for this broadcasting...

متن کامل

Neural Speech Recognizer: Acoustic-to-Word LSTM Model for Large Vocabulary Speech Recognition

We present results that show it is possible to build a competitive, greatly simplified, large vocabulary continuous speech recognition system with whole words as acoustic units. We model the output vocabulary of about 100,000 words directly using deep bi-directional LSTM RNNs with CTC loss. The model is trained on 125,000 hours of semi-supervised acoustic training data, which enables us to alle...

متن کامل

Advancing Connectionist Temporal Classification With Attention Modeling

In this study, we propose advancing all-neural speech recognition by directly incorporating attention modeling within the Connectionist Temporal Classification (CTC) framework. In particular, we derive new context vectors using time convolution features to model attention as part of the CTC network. To further improve attention modeling, we utilize content information extracted from a network r...

متن کامل

Maximum a posteriori Based Decoding for CTC Acoustic Models

This paper presents a novel decoding framework for connectionist temporal classification (CTC)-based acoustic models (AM). Although CTC-based AM inherently has the property of a language model (LM) in itself, an external LM trained with a large text corpus is still essential to obtain the best results. In the previous literatures, a naive interpolation of the CTCbased AM score and the external ...

متن کامل

Comparison of Decoding Strategies for CTC Acoustic Models

Connectionist Temporal Classification has recently attracted a lot of interest as it offers an elegant approach to building acoustic models (AMs) for speech recognition. The CTC loss function maps an input sequence of observable feature vectors to an output sequence of symbols. Output symbols are conditionally independent of each other under CTC loss, so a language model (LM) can be incorporate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018